Trace gas studies in the UT/LS from recent airborne campaigns

Elliot Atlas

Dept. of Atmospheric Sciences Rosenstiel School of Marine and Atmospheric Science University of Miami

Co-authors and contributors

- M. Navarro, L. Pope, X. Zhu, R. Lueb, V. Donets
 - RSMAS, University of Miami, FL
- S. Schauffler, R. Hendershot, L. Pan
 - NCAR, Boulder, CO
- R. Ueyama
 - NASA, Ames Research Center, CA
- R. Gao, T. Thornberry, K. Rosenlof, D. Rollins
 - NOAA, Boulder, CO
- POSIDON, CONTRAST, ATTREX Science Teams

Motivations

- What controls the chemical composition of the UT/LS region?
 - Defines chemical composition of air entering the lower stratosphere
 - Role of reactive organic compounds
 - Short-lived halocarbons and hydrocarbons
 - Sulfur species: OCS, DMS, other
 - What are transport pathways and time scales?
 - Local convection vs. long-range transport
 - What are source regions and emissions?
 - Use of chemical signatures to define source types
 - What is magnitude of human influence?

Observations of chemical composition of the UT/LS

- Satellite remote sensing
 - Large-scale, limited vertical resolution, few species
- In-situ observations
 - Balloon sondes
 - High vertical resolution
 - Water vapor, ozone, temperature, aerosol mass/number
 - Limited chemistry
 - Airborne platforms
 - Few aircraft reach >12 km
 - Large, complex payloads: radiation, aerosol, chemistry
 - Suitable for process and survey studies

Selected trace gases measured by Whole Air Sampler (WAS)

Longer Lived Species			Shorter Lived Species		
Chlorofluorocarbons	Yrs	s	Solvents	Yrs	
CFC-11	50	Α	Methylene Chloride	0.3	
CFC-12	102	Α	Chloroform	0.4	
CFC-113	85	Α	Tetrachloroethylene	0.3	
Halons			Trichloroethylene	0.02	
Halon 1211	20	Α			
Halon 2402	20	Α	Methyl Halides		
Hydro(chloro)fluorocarbons			Bromoform	0.1	
HCFC 141b	9.4	Α	Methyl Bromide	0.8	
HCFC-22	13	Α	Methylene Bromide	0.4	
HCFC_142b	19.5	Α	Methyl Iodide	0.01	
Solvent			CHxBryClz	0.1	
Carbon Tetrachloride	40	Δ	Othors		
Methyl chloroform	40	Δ	1.2 dichloro othono	0.2	
Othor	4.0		1,2 dichloro ethane	0.3	
Mathul Chlavida	1 5 1		Chlorobenzene	0.05	
wietnyi Chioride	1.5 N	1/ B	_		
Carbonyl Sulfide (COS)	30 N	/ A /	В		

	· · · · · ·		
s	Solvents	Yrs	s
Α	Methylene Chloride	0.3	Α
Α	Chloroform	0.4	A/N
Α	Tetrachloroethylene	0.3	Α
	Trichloroethylene	0.02	Α
Α			
Α	Methyl Halides		
	Bromoform	0.1	N
۸	Methyl Bromide	0.8 <mark>A</mark>	/N/B
~	Methylene Bromide	0.4	N
A A	Methyl Iodide	0.01	Ν
~	CHxBryClz	0.1	Ν
А	Others		
Α	1,2 dichloro ethane	0.3	Α
I/R	Chlorobenzene	0.05	Α

Shorter Lived Species

Organic nitrates	Yrs	S
Methyl nitrate	0.08	A/N
Ethyl nitrate	0.04	A/N
Propyl nitrate	0.03	A/N

Non- Methane Halocarbons

Ethane (C2H6)	0.2	Α
Ethyne	0.06	A/B
Propane	0.04	Α
Benzene	0.04	A/B

• Organic Halogen (long-lived)

 \rightarrow CH₃Br, CH₃Cl

→ Natural emissions (land and ocean); biomass/biofuel burning

 \rightarrow CFCs, HCFCs

 \rightarrow Anthropogenic emissions, regional sources, hot spots

• Organic Halogen (VSLS)

 \rightarrow Br: CHBr₃, CH₂Br₂, CHBrCl₂, CHBr₂Cl, CH₂BrCl, + ?

 \rightarrow Marine biogenic emissions; weeks to months

 \rightarrow I: CH₃I

ightarrow Marine biogenic emission; days

 \rightarrow CI: CH₂Cl₂, C₂Cl₄

→ NH anthropogenic emission; months (changing emissions)

Organic Nitrates

 \rightarrow Methyl nitrate (CH₃ONO₂)

 \rightarrow Equatorial marine photochemical/biochemical emission; weeks

• Hydrocarbons

 \rightarrow C2: Ethane (C₂H₆), Ethyne (C₂H₂)

→ NH anthropogenic emission; biomass burning; weeks (ethyne), months (ethane)

POSIDON Payload Layout

WB-57 and WAS in Guam

POSIDON FLIGHTS: WAS sample locations

Vertical profiles

Ozone

Halon 1211

Dibromomethane

Vertical profiles

Ozone

Halon 1211

Bromoform

Non-methane hydrocarbons

Vertical profiles – Hydrocarbons

Vertical profiles – Halocarbons

Ethyne vs Potential Temperature

RF05- 14-day back trajectories

14-day back trajectories of 10/19/2016 flight

Altitude along the trajectories in color: (top) greater than and (bottom) less than or equal to 55 kft at flight level

RF05- Convective Influence

Convectively-influenced 14-day backtrajectories of 10/19/2016 flight (top) convectively-influenced back trajectories from flight track (altitude in color) to most recent convection (asterisks) (bottom) locations of most recent convection (time since most recent convection in color)

Convective Influence: RF04 and RF05

RF05- WAS samples with convective influence <15 days

RF05 - Samples ~14 – 15 km

RF05 trace gas enhancements

				% over
Units	Background	Plume	Delta	background
ppb	1840	1925	85	5%
ppt	310	530	220	71%
ppt	40	120	80	200%
ppt	10	65	55	550%
ppt	1	9	8	800%
ppt	550	640	90	16%
ppt	7	9.1	2.1	30%
ppt	45	102	57	127%
ppt	7	14	7	100%
ppt	0.6	0.8	0.2	33%
	Units ppb ppt ppt ppt ppt ppt ppt ppt ppt ppt	UnitsBackgroundppb1840ppt310ppt40ppt10ppt10ppt550ppt7ppt45ppt7ppt0.6	UnitsBackgroundPlumeppb18401925ppt310530ppt40120ppt1065ppt19ppt550640ppt79.1ppt45102ppt714ppt0.60.8	UnitsBackgroundPlumeDeltappb1840192585ppt310530220ppt4012080ppt1065555ppt198ppt55064090ppt4510257ppt7147ppt0.60.80.2

NMHC enhancements in Asian Monsoon Outflow (Baker et al., 2011, ACP)

	June	July	August	September
Ethane	115.4 (23%)	64.5 (13%)	16.3 (3%)	-48.6 (-10%)
Propane	29.4 (71%)	16.1 (39%)	15.3 (37%)	6.6 (16%)
i-Butane	4.6 (127%)	2.6 (72%)	3.5 (96%)	2.8 (75%)
n-Butane	5.2 (89%)	3.7 (64%)	3.5 (60%)	2.3 (39%)
i-Pentane	0.1 (2%)	1.6 (49%)	0.4 (12%)	0.3 (8%)
n-Pentane	0.4 (19%)	0.8 (34%)	0.9 (37%)	0.9 (37%)
Ethyne	28.9 (45%)	53.3 (83%)	56.8 (89%)	25.4 (40%)
Benzene	12.7 (145%)	14.7 (168%)	13.5 (154%)	8.7 (99%)

Halocarbon Observations: Surface¹ and Airborne² ¹Barletta et al., 2006 (45 Chinese cities) ² Umezawa et al.,2014 (CARIBIC, 2005-2011)

Compound	Units	Background	Average	Delta	% over background
Methyl Chloride	ppt	535	952	417	78%
Methyl Bromide	ppt	8.4	13	4.6	55%
Dichloromethane	ppt	28	226	198	707%
Chloroform	ppt	9	48	39	433%
Perchlorethylene	ppt	5	129	124	2480%
from CARIBIC					
Methyl Chloride	ppt	550	650	100	18%
SON, South Asia (20N)					

Recent report of elevated halocarbons from SE Asia (Oram et al., 2017, ACPD)

Summary

- Trace gas composition of the tropical UT/LS was measured near Guam during October, 2016.
 - Extends available measurements through tropopause region.
- Local/regional convection transported reactive marine emissions to the UT
- One episode of significant pollutant transport was identified at 14 – 16 km (360 – 370 K)
- Chemical "fingerprint" and back trajectory/convective influence analysis suggests mix of urban/biofuel/biomass sources near east Indian coast
 - No enhancements of HCFCs observed.
 - Need further review and update of emission distributions

ACAM papers welcome!

Consider submitting to:

Journal of Atmospheric Chemistry

